chst365's blog chst365's blog
首页
  • Git
  • 网络
  • 操作系统
  • 浏览器
  • webpack
  • JavaScript
  • TypeScript
  • 性能
  • 工程化
  • React
  • 编程题
  • React技术揭秘
  • 算法
  • Node
  • 编码解码
  • NodeJS系列
  • Linux系列
  • JavaScript系列
  • HTTP系列
  • GIT系列
  • ES6系列
  • 设计模式系列
  • CSS系列
  • 小程序系列
  • 数据结构与算法系列
  • React系列
  • Vue3系列
  • Vue系列
  • TypeScript系列
  • Webpack系列
  • 分类
  • 标签
  • 归档
GitHub (opens new window)

chst365

DIV工程师
首页
  • Git
  • 网络
  • 操作系统
  • 浏览器
  • webpack
  • JavaScript
  • TypeScript
  • 性能
  • 工程化
  • React
  • 编程题
  • React技术揭秘
  • 算法
  • Node
  • 编码解码
  • NodeJS系列
  • Linux系列
  • JavaScript系列
  • HTTP系列
  • GIT系列
  • ES6系列
  • 设计模式系列
  • CSS系列
  • 小程序系列
  • 数据结构与算法系列
  • React系列
  • Vue3系列
  • Vue系列
  • TypeScript系列
  • Webpack系列
  • 分类
  • 标签
  • 归档
GitHub (opens new window)
  • NodeJS系列

  • Linux系列

  • JavaScript系列

  • HTTP系列

  • GIT系列

  • ES6系列

  • 设计模式系列

  • CSS系列

  • 小程序系列

  • 数据结构与算法系列

    • 说说你对链表的理解?常见的操作有哪些?
    • 说说你对数据结构的理解?有哪些?区别?
    • 说说你对冒泡排序的理解?如何实现?应用场景?
    • 说说你对分而治之、动态规划的理解?区别?
    • 说说你对归并排序的理解?如何实现?应用场景?
    • 说说你对二分查找的理解?如何实现?应用场景?
    • 说说你对集合的理解?常见的操作有哪些?
    • 说说你对选择排序的理解?如何实现?应用场景?
    • 说说你对堆的理解?如何实现?应用场景?
    • 说说你对插入排序的理解?如何实现?应用场景?
    • 说说你对算法中时间复杂度,空间复杂度的理解?如何计算?
    • 说说你对算法的理解?应用场景?
    • 说说你对贪心算法、回溯算法的理解?应用场景?
    • 说说你对树的理解?相关的操作有哪些?
      • 一、是什么
      • 二、操作
        • 前序遍历
        • 中序遍历
        • 后序遍历
        • 层序遍历
      • 三、总结
      • 参考文献
    • 说说常见的排序算法有哪些?区别?
    • 说说你对栈、队列的理解?应用场景?
    • 说说你对快速排序的理解?如何实现?应用场景?
    • 说说你对图的理解?相关操作有哪些?
  • React系列

  • Vue3系列

  • Vue系列

  • TypeScript系列

  • Webpack系列

  • 面试官
  • 数据结构与算法系列
chst365
2023-06-28
目录

说说你对树的理解?相关的操作有哪些?

# 面试官:说说你对树的理解?相关的操作有哪些?

# 一、是什么

在计算机领域,树形数据结构是一类重要的非线性数据结构,可以表示数据之间一对多的关系。以树与二叉树最为常用,直观看来,树是以分支关系定义的层次结构

二叉树满足以下两个条件:

  • 本身是有序树
  • 树中包含的各个结点的不能超过 2,即只能是 0、1 或者 2

如下图,左侧的为二叉树,而右侧的因为头结点的子结点超过2,因此不属于二叉树:

同时,二叉树可以继续进行分类,分成了满二叉树和完成二叉树:

  • 满二叉树:如果二叉树中除了叶子结点,每个结点的度都为 2

  • 完成二叉树:如果二叉树中除去最后一层节点为满二叉树,且最后一层的结点依次从左到右分布

# 二、操作

关于二叉树的遍历,常见的有:

  • 前序遍历

  • 中序遍历

  • 后序遍历

  • 层序遍历

# 前序遍历

前序遍历的实现思想是:

  • 访问根节点
  • 访问当前节点的左子树
  • 若当前节点无左子树,则访问当前节点的右子

根据遍历特性,递归版本用代码表示则如下:

const preOrder = (root) => {
  if(!root){ return }
  console.log(root)
  preOrder(root.left)
  preOrder(root.right)
}
1
2
3
4
5
6

如果不使用递归版本,可以借助栈先进后出的特性实现,先将根节点压入栈,再分别压入右节点和左节点,直到栈中没有元素,如下:

const preOrder = (root) => {
  if(!root){ return }
  const stack = [root]
  while (stack.length) {
    const n = stack.pop()
    console.log(n.val)
    if (n.right) {
      stack.push(n.right)
    }
    if (n.left) {
      stack.push(n.left)
    }
  }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14

# 中序遍历

前序遍历的实现思想是:

  • 访问当前节点的左子树
  • 访问根节点
  • 访问当前节点的右子

递归版本很好理解,用代码表示则如下:

const inOrder = (root) => {
  if (!root) { return }
  inOrder(root.left)
  console.log(root.val)
  inOrder(root.right)
}
1
2
3
4
5
6

非递归版本也是借助栈先进后出的特性,可以一直首先一直压入节点的左元素,当左节点没有后,才开始进行出栈操作,压入右节点,然后有依次压入左节点,如下:

const inOrder = (root) => {
  if (!root) { return }
  const stack = [root]
  let p = root
  while(stack.length || p){
    while (p) {
      stack.push(p)
      p = p.left
    }
    const n = stack.pop()
    console.log(n.val)
    p = n.right
  }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14

# 后序遍历

前序遍历的实现思想是:

  • 访问当前节点的左子树
  • 访问当前节点的右子
  • 访问根节点

递归版本,用代码表示则如下:

const postOrder = (root) => {
  if (!root) { return }
  postOrder(root.left)
  postOrder(root.right)
  console.log(n.val)
 }
1
2
3
4
5
6

后序遍历非递归版本实际根全序遍历是逆序关系,可以再多创建一个栈用来进行输出,如下:

const preOrder = (root) => {
  if(!root){ return }
  const stack = [root]
  const outPut = []
  while (stack.length) {
    const n = stack.pop()
    outPut.push(n.val)
    if (n.right) {
      stack.push(n.right)
    }
    if (n.left) {
      stack.push(n.left)
    }
  }
  while (outPut.length) {
    const n = outPut.pop()
    console.log(n.val)
  }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

# 层序遍历

按照二叉树中的层次从左到右依次遍历每层中的结点

借助队列先进先出的特性,从树的根结点开始,依次将其左孩子和右孩子入队。而后每次队列中一个结点出队,都将其左孩子和右孩子入队,直到树中所有结点都出队,出队结点的先后顺序就是层次遍历的最终结果

用代码表示则如下:

const levelOrder = (root) => {
    if (!root) { return [] }
    const queue = [[root, 0]]
    const res = []
    while (queue.length) {
        const n = queue.shift()
        const [node, leval] = n
        if (!res[leval]) {
            res[leval] = [node.val]
        } else {
            res[leval].push(node.val)
        }
        if (node.left) { queue.push([node.left, leval + 1]) }
        if (node.right) { queue.push([node.right, leval + 1]) }
    }
    return res
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

# 三、总结

树是一个非常重要的非线性结构,其中二叉树以二叉树最常见,二叉树的遍历方式可以分成前序遍历、中序遍历、后序遍历

同时,二叉树又分成了完成二叉树和满二叉树

# 参考文献

  • https://baike.baidu.com/item/%E4%BA%8C%E5%8F%89%E6%A0%91
  • http://data.biancheng.net/view/27.html
#面试官
上次更新: 2025/04/11, 17:57:53
说说你对贪心算法、回溯算法的理解?应用场景?
说说常见的排序算法有哪些?区别?

← 说说你对贪心算法、回溯算法的理解?应用场景? 说说常见的排序算法有哪些?区别?→

最近更新
01
面试官
03-27
02
this&指针&作用域&闭包
03-27
03
前端
03-27
更多文章>
Theme by Vdoing | Copyright © 2019-2025 chst365 | 豫ICP备17031889号-1
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式