chst365's blog chst365's blog
首页
  • Git
  • 网络
  • 操作系统
  • 浏览器
  • webpack
  • JavaScript
  • TypeScript
  • 性能
  • 工程化
  • React
  • 编程题
  • React技术揭秘
  • 算法
  • Node
  • 编码解码
  • NodeJS系列
  • Linux系列
  • JavaScript系列
  • HTTP系列
  • GIT系列
  • ES6系列
  • 设计模式系列
  • CSS系列
  • 小程序系列
  • 数据结构与算法系列
  • React系列
  • Vue3系列
  • Vue系列
  • TypeScript系列
  • Webpack系列
  • 分类
  • 标签
  • 归档
GitHub (opens new window)

chst365

DIV工程师
首页
  • Git
  • 网络
  • 操作系统
  • 浏览器
  • webpack
  • JavaScript
  • TypeScript
  • 性能
  • 工程化
  • React
  • 编程题
  • React技术揭秘
  • 算法
  • Node
  • 编码解码
  • NodeJS系列
  • Linux系列
  • JavaScript系列
  • HTTP系列
  • GIT系列
  • ES6系列
  • 设计模式系列
  • CSS系列
  • 小程序系列
  • 数据结构与算法系列
  • React系列
  • Vue3系列
  • Vue系列
  • TypeScript系列
  • Webpack系列
  • 分类
  • 标签
  • 归档
GitHub (opens new window)
  • NodeJS系列

  • Linux系列

  • JavaScript系列

  • HTTP系列

  • GIT系列

  • ES6系列

  • 设计模式系列

  • CSS系列

  • 小程序系列

  • 数据结构与算法系列

    • 说说你对链表的理解?常见的操作有哪些?
    • 说说你对数据结构的理解?有哪些?区别?
    • 说说你对冒泡排序的理解?如何实现?应用场景?
    • 说说你对分而治之、动态规划的理解?区别?
    • 说说你对归并排序的理解?如何实现?应用场景?
    • 说说你对二分查找的理解?如何实现?应用场景?
    • 说说你对集合的理解?常见的操作有哪些?
    • 说说你对选择排序的理解?如何实现?应用场景?
    • 说说你对堆的理解?如何实现?应用场景?
    • 说说你对插入排序的理解?如何实现?应用场景?
    • 说说你对算法中时间复杂度,空间复杂度的理解?如何计算?
      • 一、前言
      • 二、时间复杂度
      • 三、空间复杂度
      • 参考文献
    • 说说你对算法的理解?应用场景?
    • 说说你对贪心算法、回溯算法的理解?应用场景?
    • 说说你对树的理解?相关的操作有哪些?
    • 说说常见的排序算法有哪些?区别?
    • 说说你对栈、队列的理解?应用场景?
    • 说说你对快速排序的理解?如何实现?应用场景?
    • 说说你对图的理解?相关操作有哪些?
  • React系列

  • Vue3系列

  • Vue系列

  • TypeScript系列

  • Webpack系列

  • 面试官
  • 数据结构与算法系列
chst365
2023-06-28
目录

说说你对算法中时间复杂度,空间复杂度的理解?如何计算?

# 面试官:说说你对算法中时间复杂度,空间复杂度的理解?如何计算?

# 一、前言

算法(Algorithm)是指用来操作数据、解决程序问题的一组方法。对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,但在过程中消耗的资源和时间却会有很大的区别

衡量不同算法之间的优劣主要是通过时间和空间两个维度去考量:

  • 时间维度:是指执行当前算法所消耗的时间,我们通常用「时间复杂度」来描述。
  • 空间维度:是指执行当前算法需要占用多少内存空间,我们通常用「空间复杂度」来描述

通常会遇到一种情况,时间和空间维度不能够兼顾,需要在两者之间取得一个平衡点是我们需要考虑的

一个算法通常存在最好、平均、最坏三种情况,我们一般关注的是最坏情况

最坏情况是算法运行时间的上界,对于某些算法来说,最坏情况出现的比较频繁,也意味着平均情况和最坏情况一样差

# 二、时间复杂度

时间复杂度是指执行这个算法所需要的计算工作量,其复杂度反映了程序执行时间「随输入规模增长而增长的量级」,在很大程度上能很好地反映出算法的优劣与否

一个算法花费的时间与算法中语句的「执行次数成正比」,执行次数越多,花费的时间就越多

算法的复杂度通常用大O符号表述,定义为T(n) = O(f(n)),常见的时间复杂度有:O(1)常数型、O(log n)对数型、O(n)线性型、O(nlogn)线性对数型、O(n^2)平方型、O(n^3)立方型、O(n^k)k次方型、O(2^n)指数型,如下图所示:

从上述可以看到,随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低,由小到大排序如下:

Ο(1)<Ο(log n)<Ο(n)<Ο(nlog n)<Ο(n2)<Ο(n3)<…<Ο(2^n)<Ο(n!)
1

注意的是,算法复杂度只是描述算法的增长趋势,并不能说一个算法一定比另外一个算法高效,如果常数项过大的时候也会导致算法的执行时间变长

关于如何计算时间复杂度,可以看看如下简单例子:

function process(n) {
  let a = 1
  let b = 2
  let sum = a + b
  for(let i = 0; i < n; i++) {
    sum += i
  }
  return sum
}
1
2
3
4
5
6
7
8
9

该函数算法需要执行的运算次数用输入大小n的函数表示,即 T(n) = 2 + n + 1,那么时间复杂度为O(n + 3),又因为时间复杂度只关注最高数量级,且与之系数也没有关系,因此上述的时间复杂度为O(n)

又比如下面的例子:

function process(n) {
 let count = 0
  for(let i = 0; i < n; i++){
    for(let i = 0; i < n; i++){
      count += 1
    }
  }
}
1
2
3
4
5
6
7
8

循环里面嵌套循环,外面的循环执行一次,里面的循环执行n次,因此时间复杂度为 O(n*n*1 + 2) = O(n^2)

对于顺序执行的语句,总的时间复杂度等于其中最大的时间复杂度,如下:

function process(n) {
  let sum = 0
  for(let i = 0; i < n; i++) {
    sum += i
  }
  for(let i = 0; i < n; i++){
    for(let i = 0; i < n; i++){
      sum += 1
    }
  }
  return sum
}
1
2
3
4
5
6
7
8
9
10
11
12

上述第一部分复杂度为O(n),第二部分复杂度为O(n^2),总复杂度为max(O(n^2), O(n)) = O(n^2)

又如下一个例子:

function process(n) {
  let i = 1; // ①
  while (i <= n) {
     i = i * 2; // ②
  }
}
1
2
3
4
5
6

循环语句中以2的倍数来逼近n,每次都乘以2。如果用公式表示就是1 * 2 * 2 * 2 … * 2 <=n,也就是说2的x次方小于等于n时会执行循环体,记作2^x <= n,于是得出x<=logn

因此循环在执行logn次之后,便结束,因此时间复杂度为O(logn)

同理,如果一个O(n)循环里面嵌套O(logn)的循环,则时间复杂度为O(nlogn),像O(n^3)无非也就是嵌套了三层O(n)循环

# 三、空间复杂度

空间复杂度主要指执行算法所需内存的大小,用于对程序运行过程中所需要的临时存储空间的度量

除了需要存储空间、指令、常数、变量和输入数据外,还包括对数据进行操作的工作单元和存储计算所需信息的辅助空间

下面给出空间复杂度为O(1)的示例,如下

let a = 1
let b = 2
let c = 3
1
2
3

上述代码的临时空间不会随着n的变化而变化,因此空间复杂度为O(1)

let arr []
for(i=1; i<=n; ++i){
  arr.push(i)
}
1
2
3
4

上述可以看到,随着n的增加,数组的占用的内存空间越大

通常来说,只要算法不涉及到动态分配的空间,以及递归、栈所需的空间,空间复杂度通常为O(1),一个一维数组a[n],空间复杂度O(n),二维数组为O(n^2)

# 参考文献

  • https://juejin.cn/post/6844904167824162823#heading-7

  • https://zhuanlan.zhihu.com/p/50479555

  • https://cloud.tencent.com/developer/article/1769988

#面试官
上次更新: 2025/04/11, 17:57:53
说说你对插入排序的理解?如何实现?应用场景?
说说你对算法的理解?应用场景?

← 说说你对插入排序的理解?如何实现?应用场景? 说说你对算法的理解?应用场景?→

最近更新
01
面试官
03-27
02
this&指针&作用域&闭包
03-27
03
前端
03-27
更多文章>
Theme by Vdoing | Copyright © 2019-2025 chst365 | 豫ICP备17031889号-1
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式